Continuous, High-Quality, Non-Obtrusive 12/15-Lead ECG Monitoring

– The New Standard
- Not Only in The Intensive Care Unit

Prof. David Hasdai
Director Coronary Care Unit
Rabin Medical Center
Shortcomings of Traditional ECG Monitoring

- Restricted to 1-, 3-, or 5-leads
- Limited to heart rate assessment
- Lacks in-depth rhythm analysis
- Inaccurate for myocardial ischemia diagnosis
 - Hearts attacks only diagnosed w/12-leads
Regular 12/15-lead ECG is Cumbersome

- Shave, Gel, Adhesive, Placement
- Takes ~10 minutes to set up
- Non-uniform electrode placement
- Requires ECG operator or familiarity with device
- Impractical for long-term monitoring
- Restricted to bed-ridden patients
- Obtrusive
12/15-Lead ECG Monitoring: Pros

- **Ischemia with 12/15 Leads**
 - “Gold standard” for diagnosing myocardial infarction
 - 15-lead ECG not routinely done, but
 - stipulated in guidelines to detect right ventricular and posterior wall infarction*
 - ~10% ST-elevation myocardial infarctions go **undetected**......yet detected using posterior leads**
 - Crucial for determining reperfusion

- **Arrhythmia via 12/15 Leads**
 - Vital to determine anatomic orientation of arrhythmias
 - Stipulated in guidelines

*-Eur Heart J 2012 Oct;33(20):2569-619
12/15-Lead ECG Monitoring: Cons

- Spaghetti of wires
- Skin irritation
- Not for mobile patients
- 12-lead ≠ derived “12-lead” ECG
 - Uses only 5 leads
 - May prohibit detection of subtle ECG changes
 - 2nd ECG required if “event” detected

The HealthWatch Garment Solution

- Continuous ECG Monitoring
- Monitors **actual** 12/15-leads
 - *not* derived 5-leads
- No Electrodes. No Shaving. No Wires
- Standardized electrode placement
- No expertise needed to operate
- Ideal for bedridden and *mobile* patients
- Also for ambulatory in-patients, out-patients, high cardiac risk, and health-conscious individuals
ECG Quality You Can See…Instantly

Standard 12-Lead ECG*

HEALTHWATCH™ Garment

* - Measured via GE MAC 5500
Clinical Implications

In-hospital, Homecare, Recreation

- Monitoring of high-risk non-cardiac unit inpatients
- Earlier discharge of patients; hospital-level surveillance
- Reduced readmissions due to false alarms
- Earlier detection of unrecognized conditions
- Monitoring higher-risk individuals continuously under true, real-life situations
- Virtual clinic visits with serial ECGs rather than a snapshot ECG
Vital Sign Monitoring *Beyond* ECG

- Healthwear device **currently** provides...
 - Body posture and motion status
 - Respiratory rate
 - Skin temperature

- In the near future...
 - Oximetry
 - Non-invasive blood pressure

- Goal
 - Comprehensive cardiopulmonary monitoring
 - Intensive care quality anytime, anywhere!

Augmented Safety to Reduce Hospital-Acquired Conditions (HAC)
Possible Applications

Length of Hospital Stay
3.7.3. Average length of stay for acute myocardial infarction (AMI), 2012 (or nearest year)

<table>
<thead>
<tr>
<th>Country</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>10.3</td>
</tr>
<tr>
<td>Croatia</td>
<td>9.5</td>
</tr>
<tr>
<td>Estonia</td>
<td>9.5</td>
</tr>
<tr>
<td>Lithuania</td>
<td>9.5</td>
</tr>
<tr>
<td>Austria</td>
<td>8.0</td>
</tr>
<tr>
<td>Malta</td>
<td>8.0</td>
</tr>
<tr>
<td>Portugal</td>
<td>7.9</td>
</tr>
<tr>
<td>Hungary</td>
<td>7.9</td>
</tr>
<tr>
<td>Italy</td>
<td>7.8</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>7.6</td>
</tr>
<tr>
<td>Finland</td>
<td>7.5</td>
</tr>
<tr>
<td>Spain</td>
<td>7.4</td>
</tr>
<tr>
<td>Slovenia</td>
<td>7.3</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>7.2</td>
</tr>
<tr>
<td>Romania</td>
<td>7.1</td>
</tr>
<tr>
<td>Belgium</td>
<td>7.1</td>
</tr>
<tr>
<td>EU28</td>
<td>7.1</td>
</tr>
<tr>
<td>Greece</td>
<td>7.0</td>
</tr>
<tr>
<td>Ireland</td>
<td>6.9</td>
</tr>
<tr>
<td>Latvia</td>
<td>6.7</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>6.3</td>
</tr>
<tr>
<td>Cyprus</td>
<td>6.2</td>
</tr>
<tr>
<td>Poland</td>
<td>6.2</td>
</tr>
<tr>
<td>France</td>
<td>6.1</td>
</tr>
<tr>
<td>Netherlands</td>
<td>5.6</td>
</tr>
<tr>
<td>Slovak Republic</td>
<td>4.9</td>
</tr>
<tr>
<td>Sweden</td>
<td>4.7</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>4.3</td>
</tr>
<tr>
<td>Denmark</td>
<td>3.9</td>
</tr>
<tr>
<td>Switzerland</td>
<td>7.3</td>
</tr>
<tr>
<td>FYR of Macedonia</td>
<td>7.1</td>
</tr>
<tr>
<td>Iceland</td>
<td>6.8</td>
</tr>
<tr>
<td>Turkey</td>
<td>4.6</td>
</tr>
<tr>
<td>Norway</td>
<td>4.0</td>
</tr>
</tbody>
</table>

From: Health at a Glance: Europe 2014

Access the complete publication at: http://dx.doi.org/10.1787/health_glance_eur-2014-en
National trends in hospital length of stay for acute myocardial infarction in China

Qian Li, Zhen Li, Frederick A Mossey, Jing Li, Li Li, Sonia Hernández-Díaz, Sudhakar V Khurana, Lingli Li, Qiang Wang, John A Spunt, Frank B Hu, Harlan M Krumholz and Klein Jiang

Abstract

Background: China is experiencing increasing burden of acute myocardial infarction (AMI) in the face of limited medical resources. Hospital length of stay (LOS) is an important indicator of resource utilization.

Methods: We used data from the Retrospective AMI Study within the China Patient-centered Initiative Assessments of Cardiac Events, a nationally representative sample of patients hospitalized for AMI during 2001, 2006, and 2011. Hospital-level variation in risk-standardized LOS (RS-LOS) for AMI, accounting for differences in case mix and year, was examined with two-level generalized linear mixed models. A generalized estimating equation model was used to evaluate hospital characteristics associated with LOS. Absolute differences in RS-LOS and 95% confidence intervals were reported.

Results: The weighted median and mean LOS was 12.6 days in 2006 (n=5,533) and 11.1 and 11.9 days variation in RS-LOS across the 140 hospitals; an average 14 days (p=0.02) shorter RS-LOS than relating to capacity for AMI treatment were not found.

Conclusions: Despite a marked decline over the long-term compared with international standards, further improvement of AMI care in China is still required.

Keywords: Acute myocardial infarction, Length of stay

Figure 2 Year-trend Whisker plot of length of stay. Diamond inside the box: mean; line inside the box: median; bottom and top edges of the box: interquartile range (IQR); bottom and top edges of the whiskers: 1.5*IQR; points beyond the whiskers: outliers.
ST-segment elevation myocardial infarction in China from 2001 to 2011 (the China PEACE-Retrospective Acute Myocardial Infarction Study): a retrospective analysis of hospital data
Li J, Xi Li X, Wang Q, et al., for the China PEACE Collaborative Group
The Lancet, Early Online Publication, 24 June 2014

• Hospital admissions for STEMI per 100,000 people increased during the study period from 3.7 in 2001 to 8.1 in 2006, to 15.8 in 2011 (P(trend)<0.0001).

• Median hospital length of stay was 13 days (IQR: 7-18) in 2001, 11 days (IQR: 6-16) in 2006 and 11 days (IQR: 7-14) in 2011 (P(trend)<0.0001).
ECG – Past, Present, Future

From Eindhoven
1 lead ECG
(1902)

To 12-lead ECGs
(1929)

To 12/15 lead ECG
Anytime, Anywhere
(2015)
Step By Step Approach

- Event detected by medical provider through continuous monitoring by either
 - **Continuous transmission** to dedicated station (WiFi)
 - Inpatients
 - Nursing homes
 - **Continuous recording** and periodic transmission to caregiver (WiFi or Bluetooth)
 - In case of symptoms allow for patient triggered transmission of pre- and post-event ECG
 - More suitable for remote monitoring